1 research outputs found

    Fractal Analysis of River Flow Fluctuations (with Erratum)

    Get PDF
    We use some fractal analysis methods to study river flow fluctuations. The result of the Multifractal Detrended Fluctuation Analysis (MF-DFA) shows that there are two crossover timescales at s1×∼12s_{1\times}\sim12 and s2×∼130s_{2\times}\sim130 months in the fluctuation function. We discuss how the existence of the crossover timescales are related to a sinusoidal trend. The first crossover is due to the seasonal trend and the value of second ones is approximately equal to the well known cycle of sun activity. Using Fourier detrended fluctuation analysis, the sinusoidal trend is eliminated. The value of Hurst exponent of the runoff water of rivers without the sinusoidal trend shows a long range correlation behavior. For the Daugava river the value of Hurst exponent is 0.52±0.010.52\pm0.01 and also we find that these fluctuations have multifractal nature. Comparing the MF-DFA results for the remaining data set of Daugava river to those for shuffled and surrogate series, we conclude that its multifractal nature is almost entirely due to the broadness of probability density function.Comment: 13 pages, 10 figures, V2: Added comments, references and one more figure, improved numerical calculations with new version of data, accepted for publication in Physica A: Statistical Mechanics and its Applications. The version with Erratum contains some notes concerning Ref. [58
    corecore